Purification of Oxyfuel-Derived CO₂ for Sequestration or EOR

Vince White¹, Rodney Allam¹ and Edwin Miller²
¹Air Products PLC, Hersham Place, Molesey Road,
Walton-on-Thames, Surrey, KT12 4RZ, UK
²Air Products and Chemicals, Inc., Allentown, PA, USA

Abstract

Certain CO_2 capture processes, particularly Oxyfuel combustion in a pulverised fuel coal-fired power station, produce a raw CO_2 product containing contaminants such as water vapour, and oxygen, nitrogen and argon derived from the excess oxygen, impurities in the oxygen used, and any air leakage into the system. There are also acid gases present, such as SO_3 , SO_2 , HCl and NO_X produced as products of combustion. These acidic impurities will need to be removed from the CO_2 stream before it is introduced into the pipeline to prevent corrosion and comply with possible regulations. There may also be other stringent requirements on purity, particularly for applications such as enhanced oil recovery. In this paper we present an integrated process for CO_2 compression and simultaneous purification to produce CO_2 product streams at purities up to essentially pure CO_2 .

Keywords: CO₂ Purification, SO₂, NOx, oxyfuel

Introduction

Oxyfuel combustion in a pulverised coal-fired power station produces a raw CO_2 product containing contaminants such as water vapour, and oxygen, nitrogen and argon derived from the excess oxygen, impurities in the oxygen used, and any air leakage into the system. There are also acid gases present, such as SO_3 , SO_2 , HCl and NO_X produced as products of combustion. These acidic impurities will need to be removed from the CO_2 stream before it is introduced into the pipeline to prevent corrosion and comply with possible regulations. There may also be stringent requirements on purity, particularly for applications such as enhanced oil recovery.

Direct contact water scrubbing is used to cool the net flue gas product from the power boiler, condense water vapour present in the flue gas, and remove residual ash particles and highly soluble HCl and SO_3 before further compression and purification. The CO_2 must be purified to meet the requirements of the pipeline transportation system and the constraints of the proposed storage site, such as a deep saline aquifer or a hydrocarbon formation where the CO_2 could be used for enhanced oil recovery. This would normally involve inerts removal to avoid increasing the critical pressure of CO_2 in the pipeline and possible two-phase flow developing, leading to CO_2 purities of around 95-98% minimum.

This paper presents a mechanism for the removal of SO_2 , NOx and mercury from the raw CO_2 as it is compressed, prior to inerts removal. The requirements of enhanced oil recovery affect the purification of CO_2 requiring removal of oxygen down to around 10 ppmv. Low temperature inerts removal from crude CO_2 using phase separation has been described previously by the authors [1]. It results typically in an oxygen content of 1mol% and a total inerts level of 2-5 mol%.

Current Technology For Oxyfuel CO₂ Purification

The process for purifying raw CO₂ from oxyfuel combustion of pulverised coal is shown in Figure 1 and Figure 2. Figure 1 shows the raw CO₂ cooling and compression to a processing pressure of about 30 bar and Figure 2 shows the low temperature purification process. The impure CO₂ from the power boiler is cooled by direct contact water scrubbing in a packed tower, C101, to condense water vapour, remove traces of ash and dissolve soluble gases such as SO₃ and HCl. The circulating water system used for scrubbing is cooled by indirect heat transfer with a cooling water stream in E101 and a filtration system removes any ash present. The net condensed water together with the soluble impurities is sent to a water treatment system for further purification. Very little SO₂ or NOx is removed in this water scrubbing process. The ambient temperature CO₂ at atmospheric pressure is compressed to an intermediate pressure of about 30 bar in an axial/centrifugal flow adiabatic compressor K101 and K102. The heat of compression is recovered for boiler feedwater heating, in E102, and condensate preheating, in E103, in the boiler steam system, reducing the requirement for steam preheating. E104 and E106 are final coolers using cooling water.

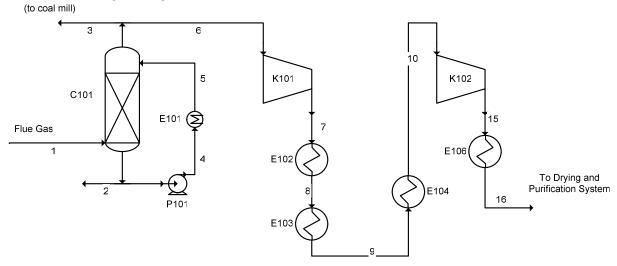


Figure 1: Raw CO₂ Cooling and Compression to 30 bar

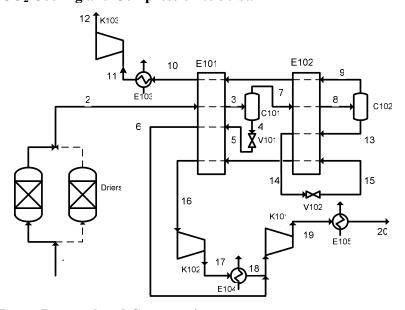


Figure 2: CO₂ Inerts Removal and Compression

The impure 30 bar CO_2 is then dried in a dual-bed thermally regenerated desiccant drier. Oxygen, nitrogen and argon are removed from the CO_2 by low temperature processing, shown in Figure 2. The impure CO_2 is cooled in E101 and E102 against evaporating lower pressure liquid CO_2 streams to a temperature of -55°C, close to its triple point, which reduces the partial pressure of CO_2 in the uncondensed gas stream to about 5 bar, corresponding to a typical concentration of approximately 20-25mol% CO_2 . The inerts stream leaving the cold equipment at about 30 bar is further heated and power is recovered from the stream using a power turbine. The purified CO_2 streams leaving the cold equipment are compressed in a second stage of CO_2 compression which is adiabatic with heat recovered to the boiler steam system in E105. Adiabatic compression ensures better aerodynamic characteristics in the CO_2 compression system near the critical points and confines the rapid density change to the aftercooler.

Once the net flue gas is cooled by direct contact with water, as in Figure 1, the raw CO_2 composition entering the CO_2 compressor is then typically as shown in column 1 of Table 1 [2]. After CO_2 purification as described above, the CO_2 product will have the composition shown in column 2 of Table 1. Although some of the NOx, N_2 , O_2 and Ar are removed, all of the SO_2 was believed to leave with the CO_2 . We will now discuss why we no longer believe that to be the case and that the correct compositions in Table 1 column 3 are more typical of the CO_2 purities one can expect from the process in Figure 1 and Figure 2.

Table 1: Raw and Product CO₂ Compositions from basic oxyfuel process

	Raw Flue Gas	CO ₂ Product	CO ₂ Product
	@ 35°C, 1.02 bara	@ 35°C, 110 bar	@ 35°C, 110 bar
	mol%	mol%	mol%
		Prior Art	Corrected
CO_2	71.5	95.8	96.3
N_2	14.3	2.0	2.0
O_2	5.9	1.1	1.1
Ar	2.3	0.6	0.6
SO_2	0.4	0.5	0.0
NO	0.04	0.01	0.0
H ₂ O	5.6	0.0	0.0

NOx, SOx and Hg Emissions in Oxyfuel Combustion

Little attention has been given to the removal of NOx and mercury compounds in oxyfuel combustion system. In the low temperature inerts removal system no detailed analysis has yet been presented on the behaviour of NO and NO_2 in the separation train. Indeed, in previously published work the assumption has been that most of the NO present in the CO_2 feed would leave with the inert gas while NO_2 would leave with the liquid CO_2 . Mercury could be distributed between the condensed water produced in the compression process and the CO_2 product, although one would assume that the desiccant drier would also catch some of this mercury. Finally, it has generally been accepted that the SO_2 present in the raw CO_2 stream will leave with the CO_2 . This solution allows co-disposal of SO_2 with CO_2 , which may or may not be acceptable/allowed under future CO_2 capture regulations.

Our aim in undertaking this research was to determine a method of producing NOx-free, SO₂-free, Hg-free and O₂-free CO₂ to meet all possible specifications of CO₂, for geological disposal and enhanced

oil recovery applications. Of course, in oxyfuel combustion it is possible to use the same NOx, SOx and Hg removal technology as used and required by air-fired combustion. We aim to show that this is not required for oxyfuel combustion.

NOx, SOx and Hg Removal in Oxyfuel Combustion

To improve the purity of the CO₂ we could remove the NO₂ and SO₂ together in a distillation step, integrated into the inerts removal process. This is discussed in prior publications [2,3]. NOx from the boiler is mostly produced as NO. To remove NO from the CO₂, NO would have to convert to NO₂ and be distilled from the system. Conversion of NO to NO₂:

$$NO + \frac{1}{2}O_2 = NO_2$$
 (1)

has been studied by many authors in the 20th century and their results are reviewed in reference [4]. At the high temperatures at which NOx is formed, the equilibrium dictates that mostly NO will be formed. At low temperature, the equilibrium of Equation 1 is strongly in favour of NO₂ production rather than NO, however at low pressure the rate of the Equation 1 is low and so, in an air fired boiler without CO₂ capture or NOx removal, the main emission would be NO. Therefore, a method of increasing the conversion of NO to NO₂ was required.

The rate of Equation 1 is slow but speeds up with *decreasing* temperature and increasing pressure and the reaction is a third order reaction:

$$d[NO_2]/dt = 2k [NO]^2.[O_2]$$
 (2)

where k, in 1^2 mol⁻² s⁻¹, is $1200 \times 10^{230/T}$ [3] where T is in kelvin. Since the rate is therefore proportional to pressure to the 3^{rd} power, this reaction rate is likely become significant at higher pressures and low temperatures. The first such place in the oxyfuel purification process is after compression to 15 bar point in the compression train, i.e. as the compressed 15 bar raw CO₂ is cooled in exchangers E102, E103 and E104 in Figure 1.

Therefore, we are confident that at the 15 bar point in the CO₂ compression system, the rate of Equation 1 will have increased sufficiently for it to require only a few seconds to reach equilibrium and convert most of the NO to NO₂ especially since there is plenty of oxygen in the raw CO₂ stream, due to the excess oxygen required for combustion.

The second reaction of significance at this point is the reaction of NO₂ with SO₂ to form sulphuric acid, commonly referred to as the lead chamber process for the manufacture of sulphuric acid:

$$NO_2 + SO_2 + H_2O = NO + H_2SO_4$$
 (3)

This reaction is known to be fast and so is considered to be equilibrium limited.

Once all of the SO₂ has been removed by Equations 1 and 3, NO₂ will be converted to nitric acid by the well understood process nitric acid process:

$$2 \text{ NO}_2 + \text{H}_2\text{O} = \text{HNO}_2 + \text{HNO}_3 \tag{4}$$

$$2 \text{ NO}_2 + \text{H}_2\text{O} = \text{HNO}_2 + \text{HNO}_3$$
 (4)
 $3 \text{ HNO}_2 = \text{HNO}_3 + 2 \text{ NO} + \text{H}_2\text{O}$ (5)

with the NO formed in Equations 3 and 5 being reconverted to NO₂ by Equation 1.

These reactions give a path-way for SO₂ to be removed as H₂SO₄ and NO and NO₂ to be removed as HNO₃. Any elemental mercury or mercury compounds present in the gaseous carbon dioxide will also be removed as mercury will be converted to mercuric nitrate since mercury compounds react readily with nitric acid. Typical nitric acid concentrations in the process will be sufficient to remove all mercury from the carbon dioxide stream, either by reaction or dissolution.

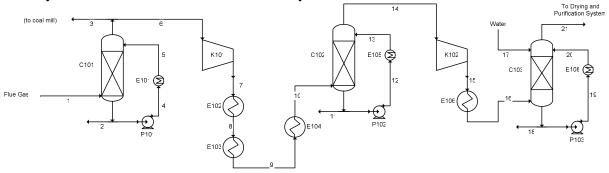


Figure 3: Raw Oxyfuel CO₂ Compression with Integrated SOx and NOx removal

To allow the reactions so far presented to proceed so as to remove SO₂, NO and NO₂ from the process, residence time and contact with water must be introduced after compression of the raw CO₂ as shown in Figure 3. It is mentioned above that, after adiabatic compression to 15 bar the CO₂ is cooled by preheating Boiler Feed Water (BFW) and condensate. Final cooling is with cooling water. At this point condensate will be removed. At this point holdup is added to the process, by, for instance, the use of a contacting column with pumped-around liquid condensate. A holdup of only a few seconds was found to allow time for all of the SO₂ to be removed as H₂SO₄. The contactors allow intimate mixing of water with SO₃ and then with NO₂ to remove these components from the gas continuously thus allowing reactions to proceed until all SO₂ and the bulk of the NO is removed. No HNO₂ or HNO₃ will be formed until all of the SO₂ has been consumed. NO₂ formed by the slow Equation 1 will be consumed by the fast reaction in Equation 3 before the slow reaction in Equation 4 can produce HNO₂ or HNO₃.

In this example, the SO₂-free CO₂ is then compressed to 30 bar before being dried and inerts removed. This 30 bar point is considered the ideal location to remove the NO and NO₂ from the process. A similar process as at 15 bar adds another few seconds of holdup to the process. Around 90% of the NOx and all of the SO₂ can be removed in this way from the CO₂ before inerts removal.

Oxygen Removal from CO₂

The purity of CO_2 required for enhanced oil recovery is greater than that required for other geological storage sinks due the requirement to minimise oxygen content as this would react with the hydrocarbons within the oil field. This adds complication to the purification of CO_2 from oxyfuel applications as there may be around 1mol% oxygen in the captured CO_2 due to the excess oxygen from combustion. This oxygen could be removed by using a fuel rich combustor, or using a catalytic combustor, to consume the oxygen present in the CO_2 before inerts removal. The route we have chosen though is to modify the flowsheet in Figure 2 to incorporate distillation of the liquid CO_2 to remove oxygen. This allows us to reach purities of 10ppm O_2 in the CO_2 without adding other impurities that might be created by fuel rich combustion.

The Power, Recovery and Purity Trade-off in CO₂ purification

Table 2 shows three different options for CO₂ purification from an oxyfuel-fired coal combustion system. Actual powers will depend upon the type of coal burned and the amount of air inleakage there is into the boiler, since this will dictate the level of inerts that must be removed from the raw CO₂, together with issues such as cooling water temperature. However, the numbers within Table 2 are consistent. What one can see is that low purity CO₂, as produced by the flowsheet in Figure 2, requires the lowest power and gives the highest capture of the contained CO₂. Increasing the purity of the CO₂ using an alteration to Figure 2 described in [2] decreases recovery by 2% with a 1% reduction in power, so overall a reduction in capture efficiency. To reach the higher purities required by EOR leads to around 5% increase in power. Therefore, one can say that the extra penalty of achieving EOR-grade CO₂ from oxyfuel-fired coal combustion is both feasible and tolerable as an extra energy penalty.

Table 2: Power, Recovery and Purity in Oxyfuel CO₂ purification

CO ₂ Purity	Oxygen Content	CO ₂ Recovery	Power ¹ from 1 to 110 bar, kWhr/tonne CO ₂ Captured
95.9 mol%	0.9 mol%	89.0 %	168.5
98 mol%	0.4 mol%	87.0 %	166.5
99.97 mol%	10 ppmv	87.4 %	177.1

Conclusions

The flue gas from an oxyfuel-fired coal power station will be wet CO₂, containing SOx, NOx and mercury. This CO₂ must be dried, compressed and purified before being sent for sequestration or used for EOR. In the process of compressing the CO₂ conditions are created for the reaction of SO₂ with NO₂ to form sulphuric acid, given enough residence time. Further, once all of the SO₂ has reacted, NO₂ will be converted to nitric acid by the addition of water. All of the SOx are removed and around 90% of the NOx, before drying, removal of inerts, and compression to 100-200 bar. Removing inerts involves cooling the raw CO₂ to a temperature close to its triple point where inerts are removed in the gas phase. This leads to CO₂ purities of around 95-98%. Modifications to this cycle allow purities of CO₂ greater than 99.9mol% with ppm levels of oxygen, a key impurity in the required purity of CO₂ for EOR.

References

- R.J. Allam, V. White, N. Ivens and M. Simmonds, "The Oxyfuel Baseline: Revamping Heaters and Boilers to Oxyfiring by Cryogenic Air Separation and Flue Gas Recycle" in "Carbon Dioxide Capture for Storage in Deep Geologic Formations – Results from the CO₂ Capture Project Capture and Separation of Carbon Dioxide from Combustion Sources Volume 1", pp 451-475, Elsevier, 2005.
- 2. IEA Greenhouse Gas R&D Programme, Report 2005/09, "Oxy-Combustion for CO₂ Capture"
- 3. R.J. Allam and C.G. Spilsbury, "A Study of the Extraction of CO₂ From a Flue Gas of a 500 MW Pulverised Coal Fired Boiler", *Energy Convers. Mgmt*, Vol. 33, No. 5-8, pp 373-378, 1992
- 4. H. Tsukahara, et al, "Gas-Phase Oxidation of Nitric Oxide: Chemical Kinetics and Rate Constant", *Nitric Oxide: Biology And Chemistry*, Vol. 3, No. 3, pp 191-198, 1999.

¹ Power includes adiabatic compression as discussed, without credit for steam system feedwater heating, so numbers may appear high compared to intercooled compression